
Monte Carlo Method for
Definite Integration
http://www.mathcs.emory.edu/ccs/ccs215/monte/node13.htm

 Numerical integration techniques, such as the Trapezoidal rule and
Simpson's rule, are commonly utilized for the purpose of
approximating the value of a definite integral. However, these
methods of approximation will guarantee a particular rate of
convergence only when the integrand has continuous derivatives to
a certain order. Before it can be applied, a numerical integration
technique also requires a certain amount of knowledge about the
function, such as the location of its domain, and where any
discontinuities may exist. If a function fails to satisfy the
requirements associated with a given numerical integration
technique, or if it behaves in such a manner that one cannot
beforehand discern a sufficient amount of information about the
function in order to circumvent any problems that may arise with
such an approach, then we can often apply a Monte Carlo method to
obtain an approximation of the integral.

Clear@"Global`∗"D;

ClearAll@x, yD

t1 = Array@x, 810<D;
lims = Table@8i, 0, 1<, 8i, t1<D;

Knowing that the (##) represents the sequence of arguments supplied to a pure function and

(## n) represents the sequence of arguments supplied to a pure function, starting with
the nth argument (f[x, ##, y, ##] & [a, b, c, d]-> f[x, a, b, c, d, y, a, b, c, d], or
f[##2] &[a, b, c, d] -> f[b, c, d])

NIntegrateB
Exp@−t1.t1D

t1.t1
, , Method → "AdaptiveMonteCarlo"F & @@

lims

0.0347335

The number of samples used to evaluate Ÿ0
1Ÿ0

1 1

x+y
„y „x for different relative tolerances:

sampleCount@pg_D :=
Module@8k = 0<,

NIntegrate@1 ê Sqrt@x + yD, 8x, 0, 1<, 8y, 0, 1<, PrecisionGoal → pg,
EvaluationMonitor k++D;

k
D;

The number of samples needed typically increases exponentially with
the PrecisionGoal:

Table@sampleCount@pgD, 8pg, 2, 12<D

8119, 289, 459, 901, 2125, 5287, 12 716, 32 436, 82 348, 201 518, 440 963<

2 Monte_Carlo_Int[1].nb

ListLogPlot@%, Joined → TrueD

2 4 6 8 10

1000

104

105

It can be time-consuming to compute functions symbolically:

f@x_D := Nest@Sin@ + Sin@2 DD &, x, 20D

NIntegrate@f@xD, 8x, 0, 1<D êê Timing

81.109, 0.947747<

Restricting the function definition avoids symbolic evaluation:

g@x_ ?NumericQD := Nest@Sin@ + Sin@2 DD &, x, 20D

Monte_Carlo_Int[1].nb 3

NIntegrate@g@xD, 8x, 0, 1<D êê Timing

80., 0.947747<

points =

ReapANIntegrateABooleAHx1L2 + Hx2 − 1L2 < 1E + BooleAHx1L2 + Hx3 − 1L2 < 1E,

8x1, 0, 1<, 8x2, 0, 2<, 8x3, 0, 2<,
Method → 8"GlobalAdaptive",

Method → 8"TrapezoidalRule", "Points" → 3<,
"SingularityHandler" → None<, PrecisionGoal → 4,

EvaluationMonitor Sow@8x1, x2, x3<DEE@@2, 1DD;

4 Monte_Carlo_Int[1].nb

Graphics3D@Point@pointsDD

There are two methods of Monte Carlo integration that we
shall be discussing: the hit or miss method and the sample
mean method.

Let y = f(x) be a function that is bounded and non-negative on the
interval [a,b]. Then there must be some real number c, c > 0, such

Monte_Carlo_Int[1].nb 5

that
f(x)§ c§0 for all x in [a,b]. Now, the definite integral :
 Ÿa

bf HxL „x

represents the area of the region beneath the graph of y = f(x) and
above the x-axis on [a,b]. Let us denote this region as R. Then this
region R is contained entirely within the rectangle bounded by the
lines x = a, x = b, y = 0, and y = c, and which has an area of c(b -
a). Let A be the area of region R--the value of this definite integral.
Then the fraction of the rectangle that the region R represents is
given by A/c(b - a). Suppose that we randomly select a point (x1,
y1) from within this rectangle (including its boundary). Now, to
randomly select (x1,y1) from within the rectangle implies that we
randomly select x1 from the interval [a,b] and y1 from the interval
[0,c]. The probability that this point will lie within region R will then
be p = A/c(b-a). This means that the point (x1,y1) has probability p
that it will satisfy the relation y1§ f(x1).

We shall consider is the approximation of the area of the
region between the x - axis and the graph of the curve y =
1/x on the interval
[1, 2].
This implies that we are finding an approximation to Ÿ1

21 ê x „x=ln(2)
On the interval [1,2], the curve y = 1/x satisfies the bounds 0 § 1/x
§ 1=>the region is contained within the rectangle bounded by the
lines x = 1, x = 2, y = 0, and y = 1, having an area of 1 square unit.
The ratio ln(2)/1=ln(2) is then approximated by randomly choosing
points (x,y) such that 1 § x § 2 and 0 § y § 1and then by finding the
ratio of the number that satisfy y(x) § 1/x to the total.

6 Monte_Carlo_Int[1].nb

p1@x_D := 1 ê x;
nmbr := 1
Do@event = 0;

Do@u = Random@D;
v = Random@D;
x = 1 + u;
y = v;
If@y ≤ p1@xD, event = event + 1D, 8i, 1, nmbr<D;

Print@"nr.= ", nmbr, " average = ", event ∗ 1. ê nmbrD;
nmbr = 2 ∗ nmbr, 8j, 1, 22<D

nr.= 1 average = 1.

nr.= 2 average = 1.

nr.= 4 average = 0.25

nr.= 8 average = 0.625

nr.= 16 average = 0.6875

nr.= 32 average = 0.53125

nr.= 64 average = 0.5625

nr.= 128 average = 0.671875

nr.= 256 average = 0.695313

nr.= 512 average = 0.660156

nr.= 1024 average = 0.716797

nr.= 2048 average = 0.687012

nr.= 4096 average = 0.708496

nr.= 8192 average = 0.694336

nr.= 16 384 average = 0.68811

nr.= 32 768 average = 0.695709

nr.= 65 536 average = 0.690002

nr.= 131 072 average = 0.694077

nr.= 262 144 average = 0.694744

nr.= 524 288 average = 0.692966

nr.= 1 048 576 average = 0.692958

nr.= 2 097 152 average = 0.692826

Monte_Carlo_Int[1].nb 7

NIntegrate@1 ê x, 8x, 1, 2<D

0.693147

Let y = f(x) be a function that is bounded on the interval
[a,b]. Then the mean or average value of f(x) on [a,b] is
given by
et y = f(x) be a function that is bounded on the interval [a,b].
Then the mean or average value of f(x) on [a,b] is given by

fmed= 1

b-a Ÿa
bf HxL dx

Now suppose that we randomly select n values,x1,x2,...xn, from the
interval [a,b]. Then we would expect to be able to approximate the
average value of f(x) on [a,b] by averaging the values of f(x) at the
xi:

fmed º 1

n ⁄i=1
n f HxiL

Thus we see that

Ÿa

bf HxL dx º b-a
p

⁄i=1
n f HxiL

This then yields a method of approximating the definite integral of
f(x) on [a,b], known as the sample mean method of Monte Carlo
integration.

Let us once again consider how to approximate the area of the
region above the x-axis and beneath the graph of the function y =
f(x), where

8 Monte_Carlo_Int[1].nb

f(x)=Sin(50x)Cos(120x)+1

on the interval [0,p]. In this case we shall utilize the sample mean
method of Monte Carlo integration to find the value of the definite
integral

Ÿ0
p@SinH50 xL CosH120 xL + 1D „x

We incorporate the sample mean method of Monte Carlo integration
to obtain a sequence of approximations of the average value of this
function on [0,p] by means of the Mathematica program

p2@x_D := IntegerPart@Sin@50 ∗ xD ∗ Cos@120 ∗ xD + 1D
a = 0.0;
b = Pi;
nmbr := 1
Do@smm = 0.0;

Do@x = a + Random@D ∗ Hb − aL;
y = p2@xD;
smm = smm + y, 8i, 1, nmbr<D;

Print@"nr. = ", nmbr, " average = ", smm ê nmbrD;
nmbr = 2 ∗ nmbr, 8j, 1, 22<D

nr. = 1 average = 1.

nr. = 2 average = 0.5

nr. = 4 average = 0.5

nr. = 8 average = 0.5

nr. = 16 average = 0.4375

nr. = 32 average = 0.4375

nr. = 64 average = 0.453125

nr. = 128 average = 0.46875

nr. = 256 average = 0.53125

nr. = 512 average = 0.488281

nr. = 1024 average = 0.518555

nr. = 2048 average = 0.50293

Monte_Carlo_Int[1].nb 9

nr. = 4096 average = 0.494873

nr. = 8192 average = 0.497803

nr. = 16 384 average = 0.500183

nr. = 32 768 average = 0.501221

nr. = 65 536 average = 0.5009

nr. = 131 072 average = 0.499077

nr. = 262 144 average = 0.49894

nr. = 524 288 average = 0.501053

nr. = 1 048 576 average = 0.499733

nr. = 2 097 152 average = 0.499512

From this data it appears that the average is approximately 0.500,
which yields a value of 3.142*0.500=1.571 for the area of the region

10 Monte_Carlo_Int[1].nb

NIntegrate@Sin@50 ∗ xD ∗ Cos@120 ∗ xD + 1, 8x, 0, π<D

3.14159

Monte Carlo Method for Definite
Integration

Steven Keltner and Scott Sloan University of Missouri-Rolla

 The program evaluates definite integrals by creating a "box" with
dimensions defined by the limits of integration and the maximum
and minimum values of the function on the selected interval. The
computer randomly generates the coordinates of a point within the
box. The function is evaluated at the randomly selected x value. If
the random point falls within the area of the integral, it is counted by
Mathematica. After performing the procedure for the specified
number of points (iterations), the computer calculates the final result
by multiplying the total area of the box by the percentage of points
that fell within the bounds of the integral. Of course, many functions
have regions that fall below the line y=0. If the program encounters
a point that is within the area of the integral but below the x-axis, it
subtracts one from the total number of points counted.
 One would expect that the more points generated for each
evaluation of the integral, the more accurate the answer will be.
Since random numbers are used, however, there will always be
variation from one determination to the next. Because of the lack of
precision, the program is designed to perform many calculations with
a varying number of iterations. Doing so makes it possible to "zero
in on" the actual answer.

 The first part of the program defines the parameters :

Monte_Carlo_Int[1].nb 11

h@x_D = Exp@xD^2 − x + 1; H∗you can use any function = ??∗L
x0 = −2; H∗begining of the interval∗L
xm = 2; H∗ending of the interval∗L
stepsize = 2000 ; H∗step size∗L
it0 = 1000 ; H∗smallest iterations∗L
itm = 2000 ; H∗largest iterations∗L
trials = 100 ; H∗repeats for same iterations∗L
l1 = 8<; H∗empty list∗L
l2 = 8< ;
H∗empty list∗L

 The second step is to determine the maximum and minimum value
of the function on the specified interval. The program uses these
results as boundaries between which random y values are selected.
The values are also necessary to determine the area of the "box."

y0 = Min@Table@N@h@xDD, 8x, x0, xm, 0.01<DD;
ym = Max@Table@N@h@xDD, 8x, x0, xm, 0.01<DD;

 The third step of the program generates random coordinates and
determines how each point should be counted. If the random y value
r is less than or equal to the function evaluated at the random x
value s, it is counted.

Do@Do@Counter = 0;
Do@r = Random@Real, 8y0, ym<D;
s = Random@Real, 8x0, xm<D;
If@r <= h@sD && r >= 0, Counter = Counter + 1, Counter = CounterD;
If@r >= h@sD && r < 0, Counter = Counter − 1, Counter = CounterD,

8i, 1, k<D;
AppendTo@l2, N@HCounter ê kL ∗ HHxm − x0L ∗ Hym − y0LLDD;

AppendTo@l1, kD, 8j, 1, trials<D;
, 8k, it0, itm, stepsize<D;

 In the forth step after transposing the data, the information is
plotted:

12 Monte_Carlo_Int[1].nb

data = Transpose@8l1, l2<D;
ListPlot@data, PlotRange −> AllD

500 1000 1500 2000

−1.0

−0.5

0.5

1.0

Monte_Carlo_Int[1].nb 13

